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a b s t r a c t

The problem of the existence of a tensor that is inverse to the well-known Eshelby tensor, which connects
the free homogeneous and hindered strains of an ellipsoidal elastic inclusion undergoing transformation,
is investigated. It is shown that this tensor exists for inclusions in the form of oblate and prolate spheroids
in isotropic elastic space. Certain applications are considered, in particular problems of determining the
stresses in ellipsoidal rigid and rigid plastic inclusions.
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The classic results obtained by Eshelby1 relate to ellipsoidal elastic inclusions in an elastic medium subjected to two types of effects:

1. Changes in the shape and linear dimensions, which, in the absence of resistance of the surrounding medium, correspond to homogeneous
strain; there are no external forces in this case.

2. The inclusion and medium have different elastic constants; evenly distributed stresses are applied at infinity.

The relations between hindered and free homogeneous strains (case 1) and between strains at infinity and in the inclusion (case 2) will
contain an asymmetrical fourth-rank tensor. The same tensor occurs in relations linking stresses and strains at infinitely remote points
of the elastic medium and in an ellipsoidal physically non-linear inclusion contained in this medium.2,3 Note that in all these cases the
stress–strain state in the inclusion will be homogeneous.

A natural question arises: is there an inverse tensor to the Eshelby tensor? This will unable us to invert the above-mentioned relations
between the hindered and free strains of the inclusion, and also to consider new problems, for example, the determination of the stresses
in ellipsoidal rigid and rigid-plastic inclusions.

The problem of the inverse Eshelby tensor in the general case of an ellipsoid with different semi-axes proved to be non-trivial. Its
existence for ellipsoids of rotation in isotropic elastic space is shown below.

1. The existence of the inverse Eshelby tensor for inclusions in the form of oblate and prolate spheroid

We will consider an elastic space v containing an ellipsoidal inclusion �∗, the boundary equation of which in the selected coordinate
system x1, x2, x3 has the form x2

k
a−2

k
= 1(a1 ≥ a2 ≥ a3). Here and below, summation from 1 to 3 over repeated indices is implied unless

stated otherwise.
As has been shown,1 the tensor S (the Eshelby tensor) is independent of xk (k = 1, 2, 3) but is determined by the geometry of the region �∗

and the characteristics of the medium �. In the case of an isotropic elastic space �, non-zero components of the given tensor are determined
in the following way1–3 (� is Poisson’s ratio)

(1.1)
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(k, l = 1, 2, 3; k /= l; no summation with respect to k and l); the remaining components Sklmn = 0.
The quantities Ik, Ikk and Ikl are expressed in terms of elliptic integrals of the first and second kind and can be found if any two of the

quantities Ik are known, as, for example, for oblate and prolate spheroids, where Ik represents the elementary functions a1, a2, a3, and the
following equations will occur (� < 1):when a1 = a2 = ˛ and a3 = ı˛

(1.2)

when a1 = ˛ and a2 = a3 = ı˛

(1.3)

The 6 × 6 matrix
∥
∥skl

∥
∥, the elements skl of which are defined in the following way:3 skl = Skkll (k, l = 1, 2, 3; no summation with respect

to k and l), s44 = 2S1212, s55 = 2S1313, s66 = 2S2323 and the remaining skl are equal to zero, corresponds to the tensor S.
Finding the inverse tensor S−1 is equivalent to finding the inverse matrix to

∥
∥skl

∥
∥, for which, as follows from the above formulae for

skl (k, l = 1, 2, 3) and the inequalities skk > 0 (k = 4, 5, 6; no summation with respect to k), it is necessary and sufficient for the 3 × 3 matrix
equal to

∥
∥so

kl

∥
∥ ≡

∥
∥skl

∥
∥ (k, l = 1, 2, 3) to be non-degenerate, i.e.,

(1.4)

We will show that, for the above-mentioned ellipsoids of rotation, condition (1.4) is satisfied.
An inclusion in the form of an oblate spheroid. From relations (1.1) and (1.2), omitting the calculations, we obtain

(1.5)

From relations (1.2) and (1.5) it can be seen that �0 is the function of �(0 < � < 1) and 3I > 4��2. Introducing the new variable t = 1 − �2

(0 < t < 1), we conclude that the condition �0 = 0 is equivalent to the equation

(1.6)

We will consider the case of an incompressible elastic medium when � = 1/2. From Eq. (1.6) we find

(1.7)

Equation (1.7) in t, for 0 < t < 1, has no roots, since

From this it follows that f1(t) > f2(t).
Thus, Eq. (1.6) with � = 1/2 has no solutions; consequently, �0 /= 0.
Let 0 ≤ � < 1/2. Considering Eq. (1.6) as an equation in F, we obtain its roots

(1.8)

The inequality occurs by virtue of the fact that
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For the function �(t) of system (1.6) we obtain

(1.9)

Since Ik > 0 (k, l = 1, 2, 3), from Eqs. (1.2) it follows that 2(1 − t)/3 < F < 2/3, and from Eqs. (1.8) we have

(the last inequality follows from the fact that 9 − 8t + 4�t > 0). Therefore, F − F1 < 0, and, in view of Eq. (1.9), the condition �(t)=0 is equivalent
to F = F2.

We will show that this equation in t has no roots for 0 < t < 1.
In fact, the inequality f1(t) > f2(t) established above for the functions from (1.7) is equivalent to the following:

(1.10)

(F, F2 and D are defined by formulae (1.6) and (1.8)).
Considering F2 as a function of �, we will find its derivative:

From this it can be seen that, if f3 ≡ 4(1 − �)t − 1 ≥ 0, then F ′
2(�) > 0.

If f3 < 0, again we will have F ′
2(�) > 0, since D − (−f3)2 = 8(1 − t) > 0.

Consequently, F2 = F2(�) is an increasing function, and from the inequality (1.10) we obtain

Then, taking into account that F − F1 < 0, from relations (1.8) and (1.9) we find �(t) < 0 when 0 < t < 1 and 0 ≤ � ≤ 1/2.
An inclusion in the form of a prolate spheroid. In this case, from relations (1.1) and (1.3), carrying out calculations similar to the previous

ones, we can establish that the condition det
∥
∥so

kl

∥
∥ = 0 is equivalent to the equation

(1.11)

When � = 1/2, we will have

(1.12)

Equation (1.12), as with Eq. (1.7), has no roots for 0 < t < 1, since f o
1 (0) = f o

2 (0) and

Consequently, f o
1 (t) > f o

2 (t).
When 0 ≤ � < 1/2, from equality (1.11), by analogy with Eq. (1.9), we obtain

(1.13)

The condition �o(t)=0 reduces to the equation Fo = Fo
1 , which has no solutions when 0 < t < 1. In fact, the inequality f o

1 (t) > f o
2 (t) for

functions (1.12) is equivalent to Fo = Fo
1 when � → 1/2. For the derivative of the function Fo

1 with respect to � we have
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since [1 + (3 − 4�)t]2 − D0 = 8(t − 1) < 0. Consequently, Fo
1 = Fo

1 (�) is a decreasing function, and therefore

and from relations (1.13) we find �o(t)<0 when 0 < t < 1 and 0 ≤ � ≤ 1/2.

2. Determination of the stresses in rigid inclusions

We will examine an elastic space with an ellipsoidal rigid inclusion v* subjected to the action of stresses �∞
kl

(k, l = 1, 2, 3) uniformly
distributed at infinity. The problem arises as to the possibility of determining the stresses in the region �∗.

Earlier2,3 a similar problem was investigated for an ellipsoidal physically non-linear inclusion with constitutive equations of fairly
general form

where Fkl and Gkl are the components of mutually inverse tensor operators. In region �, Hooke’s law holds, namely,

where aklmn are components of the elastic compliance tensor.
The following relations were established2,3 between the stress–strain states in the inclusion and at infinity

(2.1)

where Sklmn are the components of the tensor S. For the rigid inclusion �∗ examined here, when ε∗
kl

= 0 (k, l = 1, 2, 3) we obtain

(2.2)

Then (S−1
klmn

are the components of the tensor S−1)

(2.3)

From relations (2.1) to (2.3) it can be seen that the components of the stresses �∗
kl

will be found if condition (1.4) is satisfied.
If the inclusion �∗ is rigid plastic, i.e., ε∗

kl
= 0 when s < �T , where �T is the yield point, and s = s(�∗

kl
) is a first-degree homogeneous function

(the equivalent stress, for example the stress intensity or the maximum shear stress), and the loading at infinity is simple: �∞
klo

= �∞
klo

�,
where � ≥ 0 is the loading parameter, then, according to Eq. (2.3), we have �∗

kl
= �∗

klo
�. Hence, s(�∗

kl
) = s(�∗

klo
)�, and it is possible to find the

value �T of the parameter � for which the inclusion �∗ will transfer into the plastic state when s = �T : �T = �T /s(�∗
klo

).
As another example we can examine a heteromodular inclusion whose strains depend on the sign of the first invariant I∗� = �∗

kk
of the

stress tensor.
A model of an isotropic heteromodular elastic material whose bulk modulus depends on the sign of I∗� has been proposed.4 It can be

extended to the case of a rigid inclusion in the following way. We will assume that, when I∗� ≥ 0, the region �∗ is elastic and has the same
characteristics as the surrounding medium �, and that, when I∗� < 0, it is undeformable, i.e., ε∗

kl
= 0 (k, l = 1, 2, 3). Then, under specified

external stresses �∞
kl

, from Eq. (2.1) we will have ε∗
kl

= ε∞
kl

when I∞� ≥ 0, as ε∗
kl

= ε̃∗
kl

= aklmn�∗
mn. If I∞� < 0, then likewise I∗� < 0, as, in the

opposite case, i.e. when I∗� ≥ 0, from Eq. (2.1) it would follow that I∞� = I∗� ≥ 0 in view of the fact that ε∞
kl

= ε∗
kl

. Then, from Eq. (2.1) with
ε∗

kl
= 0 we will have the relations (2.2) and (2.3) for finding the stresses in a rigid inclusion (with I∗� < 0).

3. Conclusions

In the cases examined above of inclusions in the form of ellipsoids of revolution it has been shown that condition (1.4), which ensures
the existence of an inverse Eshelby tensor, is satisfied. This enables us to invert the above-mentioned relations between hindered and
free strains examined by Eshelby,1 guarantees the singularity of the solution of problems of determining the stresses in ellipsoidal rigid
inclusions and also makes it possible to determine the instant when rigid plastic inclusions transfer into the plastic state under the action
of external monotonically increasing stresses.
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